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Overview

This deliverable D6.1.2 is the following draft manuscript to be submitted as a WISER
paper to arefereed journal:

Assessing uncertainty of indicators of Water Framework Directive ecological status class

Ralph T. Clarke

Centre for Ecology and Environmental Sciences, 8kclod Applied Sciences, Bournemouth
University, Talbot Campus, Poole, Dorset, BH12 5B,

Abstract

Since the introduction of the European Union W&t@mework Directive in 2000, considerable
effort has been made the Member States to deveahlipgiral assessment and monitoring
systems for the ecological status class of all hairt water bodies (river stretches, lakes,
transitional and coastal waters) based on one ore nfological quality elements (fish,
macroinvertebrates, diatoms-phytoplankton, macrtgshgnd physical habitats). In accordance
with the WFD, these assessment systems have usedly derived by the use of one or more
biological indices (often termed metrics) deriva®ni the sampled biological taxonomic
composition and diversity, which are converted twlBgical Quality Ratios (EQRS) through
standardised by reference condition values of te&iafs) for each water body type and then
classified into one of five ecological status césssAll of these steps and every sampling and
other methodological decisions you make can atfextwaterbody assessment and are potential
sources error or uncertainty.

In this paper, the various sources of uncertairgycansidered in more detail. The best-available
datasets for assessing uncertainty in WFD staass @f UK rivers based on macroinvertebrate
sampling are used to demonstrate how spatial amdpdral variance in metric values can be
estimated. New free-available software WISERBUGSISE®R Bioassessment Uncertainty
Guidance Software) is described which can help uantify the effect of this estimated
sampling variability on the confidence of assignivater bodies to status classes.

Keywords

Water Framework Directive, WFD, uncertainty, coefide, ecological status class, sampling
variation, metric, multi-metric indices

Page 4/24



WISER

Deliverable D6.1-2: Uncertainty components and their assessment

1. Introduction

Any ecological index is of little use without somederstanding of the sources and sizes of the
sampling error and other uncertainties in its estiom (Clarke et al., 1996).

The European Water Framework Directive (WFD) (Ee=p Union, 2000) requires Member
States to assess, monitor and, where necessarypvenphe ecological quality of its water
bodies (river stretches, lakes, transitional/egtgaand coastal waters). The WFD prescribes
that such bioassessments should be based on thesvi@r one or more Ecological Quality
Ratios (EQRSs), each classified into one of fivelegical status classes (high, good, moderate,
poor, bad), where the EQRs represents the exterdisafepancy between the values of
biological parameters observed for a water body &l the values of the same parameters
expected for that type of WB if it was in refereramndition. The biological parameters usual
summarise some aspect of taxonomic diversity orpomition as quantitative indices (often
referred to as metrics) The overall status classaf WB is based on the use of EQRs and
estimated status classes for one or more sampledufweyed) biological quality elements
(BQEs), namely fish, macroinvertebrates, diatomgqgiiankton, macrophytes and physical
habitats. The WFD ecological status class of Ewanpevers, lakes, transitional and coastal
waters has been one of the most high profile “egiold indicators”. Any such classification
measures of aquatic ecological quality are ofelittlalue without some knowledge and
guantitative estimates of their susceptibility gammpling/surveying error and other uncertainties
and of the confidence in assigning individual wabedies to ecological status classes. In
recognition of this, the WFD states that ‘estimaiéshe confidence and precision attained by
the monitoring system used shall be stated inittez basin monitoring plan’ (European Union,
2000, Annex V, section 1.3.4).

Understanding the causes of change, and espededine, in WFD ecological quality and
providing advice on measures to improve qualitgluding for water body management plans,
requires some quantitative knowledge of the refastigp between potential stressor variables
and the biotic response measures (Johnson et @6).20his relationship is often assessed by
developing statistical or maybe more mechanisticde calibrated by field observations and
estimates of all variables and model parameteithelimodelled relationship between observed
values of the biotic metric and the estimated \aliethe stressor variable(s) is very good, then
not only must the underlying relationship be strd@afthough necessarily causal), but the
sampling errors in the observed biotic metric valter each waterbody (or site) must be low
relative to the total variance in metric valueswen all WB in the relationship (Fig. 1(a)). (In
addition, the estimation errors for the stressatalde values (e.g. lake mean annual total
phosphorus concentration) for a each waterbody imeismall relative to the total variance in
stressor variable values amongst all waterbodiegeeoame type (i.e. same estimated/predicted
reference condition values). However if, as is camrmn field-based ecological modelling, the
observed data-based biotic-stressor relationshiptisery strong, then it is important and very
useful to know whether this is because the undeglyiue relationship is weak (cases (b) and
(d) in Fig. 1) or because the true relationshiptieng but spoilt by our high sampling errors in
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estimating the biotic metric values (case (c) ig.EJ. Therefore in any such modelling, for
WEFD or other objectives, it is useful to determthe sampling variance (i.e. precision) in the
estimates of site and waterbody biotic index valespecially relative to between-waterbody
and total variability amongst all waterbodies, siend samples of similar types (e.g. with
similar reference condition values).

Underlying Sampling
variance

of index
=) (3) strong & low

»
|

Biotic Relationship

index

Pressure 4
(b) weak & Ilow
Biotic
index ‘<(c) strong & high
Pressure (d) weak & high

\

Fig.1 Relationships amongst sites between obseraless of biotic index and pressure variable

Differentiating three possible causes (b-d) of arpeelationship requires estimating sampling

precision of biotic index (horizontal bar and veatilines denote water body index true mean and
sampling error respectively)

»
»

In their recent review of the achievements madiénfirst 10 years of the WFD, Hering et al.

(2010) concluded that “Future challenges still remincluding the estimation of uncertainty in

assessment results and a revision of rules in guntithe results obtained with different

Biological Quality Elements”. This current papeteatpts to contribute towards improving

understanding and assessment of sampling and uribertainties in estimates of metrics, EQRs
and WFD ecological status class and the implicati@mn confidence and uncertainty of multi-

metric and multi-BQE water body assessments.
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2.  Bioassessment uncertainty

It is useful to remember that an estimate of a mabely status class is made, and assumed to
apply, for both a specific area in space (i.e.vilager body, lake, estuary or stretch of river) and
for a period in time (the assessment period) whalld be one day, one month, one season, one
year or maybe, three or five years (in the cagetbnal long-term surveillance monitoring).

2.1 Sources of bioassessment uncertainty

The total uncertainty and potential error in estingathe true status class for a WB for a period
is due to the combined effects of:

0] spatial biological variability within the WB
(i) temporal biological variation within the assessnpariod
(i) the choice of sampling/surveying methods and sarggersonnel

(iv) the sub-sampling and sample processing protocoigluding taxonomic
identification and variation in expertise of pmrael used

(v) errors in setting appropriate reference conditiaues due to limitations in the
available reference sites’ data and/or uncertamtye predictive modelling of their
biota-environment relationships

(vi)  the choice of biological indices and the methotheir conversion to EQRs
(vii)  the choice of status class limits

(viii)  the choice of multi-metric indices and class raed/or multi-BQE rules.

It is useful to be remain aware that every methogiokl decision you make can affect the WB
assessment and its true uncertainty. However, thetipal way to progress is to acknowledge
that there is no absolute true or correct WB clasgion protocol. We should therefore aim, at
least initially, to assess the uncertainty in oiabsessments due to the spatial and temporal
sampling variation and sample processing errorsditional on the chosen overall WB
classification protocol, namely conditional on tf®ice of BQEs, sampling/surveying methods,
metrics, EQRs and status class rules. This is asitignthe sampling precision of our chosen
method. In one sense, the actual accuracy (vamatiout the “true” WB value) is unknowable
as the true quality depends on which subjective@spof the biota and which methods we use
to define WB quality. We can only assess a fornaafuracy by the strength of some form of
correlation between our biotic measures and inddggr@nWB condition measures based on the
extent of anthropogenic modifications and stresgegating at the water body (Johnson et al.
2006). However, the emphasis of the WFD approadb isase assessments on the biological
rather than the chemical conditions. In the lortgem we should try to compare different WB
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classification protocols (based on different methaudetrics, reference sites, BQEs and status
class rules), to learn from their discrepanciesiamqtove our bioassessment protocols.

Ideally, each potential source of uncertainty im 9YB assessments should be scientifically
assessed and quantified, either from suitableirgistatasets, or else from new scientific studies
specifically designed with replication at the apprate spatial and temporal field scale,

replication of any sub-sampling, and/or use of mldtpersonnel to assess the extent of inter-
operator effects metric and status class variglioit a water body.

This can help us revise our monitoring samplinggiefor each water body and our overall bio-
assessment methodology to improve the precisiovoamdst-effectiveness of our monitoring
scheme. If we understand which sources of variati@mke substantial contributions to the
uncertainty associated with an assessment, mangtstrategies can be designed to reduce this
uncertainty and hopefully give an acceptable le¥elonfidence.
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3.  Estimating spatial and temporal sampling varian  ces

The WFD status class for a waterbody is usuallethas the one or more metrics from one or
more BQEs. For any one metric, the metric valuel (@erived EQR) used for a waterbody is
usually based on some form of average of the meditices from the samples obtained from that
waterbody over the assessment and monitoring iegqueriod.

In order to derive estimates of the sampling uadety for the estimated metric (and EQR)
value for a water body, it is necessary to havémesés of the various sources of spatial,
temporal and sampling processing errors relevatitabWB and period of time.

3.1 Example using macroinvertebrate datasets and m  etrics for UK rivers

As a real example illustrating the effects of sadind temporal variability on the uncertainty of
water body, | use results from an analysis of alboation of UK government environment

agencies’ UK datasets for river macroinvertebrae@es based on the RIVPACS sampling
and sampling processing procedures (Murray-Blig97) and the RIVPACS bioassessment
system(Clarke et al. 2003) (Table 1).

For WFD reporting purposes, the UK agencies propegerting the river quality for each river
water body (i.e. cohesive river stretch) as theraye quality over a three year period. The
RIVPACS approach uses a predictive statistical rhofiehe macroinvertebrate-environment
relationship between UK-wide reference sites tosstetspecific expected (E) values for each
macroinvertebrate metric which are then comparet thie observed (O) values as EQR (O/E)
ratios. The expected values are also season speddfiallow for natural variation in
macroinvertebrates between (RIVPACS) sampling seagéeb-May, June-Aug, Sept-Nov)
(Clarke et al. 2003). Therefore, the sources ofanae in the observed (O) values of metrics
which affect the sampling variance of river watedy average quality over a three-year period

are replicate sampling variability at the same sitethe same dayd(;), spatial variability
between sampling sites within the water body ), within-season ¢;,) and between-year-

within-period (07) temporal variability (Table 1). There is also atgnmtial spatio-temporal
interaction variance.

Although the datasets are the best available K, they are not ideal as no single dataset
enables us to estimate all of the above varianogooents across a wide range of water bodies
(Table 1). However, it was possible to fit a staded mixed model to the combined datasets
involving (assumed constant) average values foh @atiance component while allowing for
(fixed effect) differences between combinationswadter bodies, seasons and periods. The
mixed models were fitted using the REML (Residuaxiihum Likelihood) procedure within
the Genstat statistics package, but can also ted fitssing the Ime and Imer mixed model
functions in the R programming language.
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Table 1. Spatial, temporal and replicate samplig dtructure of UK river sites datasets, together
with the sampling uncertainty variance componerftilvcan be estimated from each dataset.

Dataset Sampling structure
BAMS 16 study sites (4 qualities x 4 physicaldgp x 3 seasons
x 3 replicates (1& 3" operator A, # operator B) — one year only
TAY 28 (mostly good/high quality) sites in Tay regiof Scotland
X 4 replicates x 2 seasons per yeanfust years over period 1988-1997

SEPA 418 Scottish SEPA sites (from high to bad ityyaséampled in each of 23
seasons per year over period 1990-2004 (181 casesamples on different
days in same season)

DOVE Dove Catchment in Central England : 5 WFD waddies with 3, 2, 3, 1 and|1
monitoring sites per water body (moderate to highiable quality), mostly
one sample in spring and autumn for most years-2983

Variance components (Y denotes dataset contrilblatiasto estimation)
i I Bet it
. Within-season | Inter-year within e.W.een SIte
Replicate temporal 3-vr period within WB
P yre Spatial
BAMS
TAY Y
SEPA Y
DOVE Y

Further details of the datasets and the approacbed to estimate variance components are
given in Clarke (2009). The variance component rwdeere fitted to each of the two
macroinvertebrates indices which are currently dsedational assessments and monitoring of
UK rivers, namely the number of BMWP (Biological Nitoring Working Party) families
present (NTAXA) and the BMWP Average Score Per Tarb the families present (ASPT).
The richness metric NTAXA was analysed on the sgjuaot scale as Clarke et al. (2002)
showed that this transformation removed the tengdoc replicate sampling variance of
NTAXA to increase with the replicate mean NTAXA wal for a river site and thus made
sampling variance independent of site type andityyaupporting the use of single variance
component estimates for all river sites (when basethe RIVPACS sampling protocol).
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Table 2. Estimates of replicate, temporal and spateampling variance components of
macroinvertebrate metrics (ASPT and the squareaoNfTAXA) based on a combination of UK
river sites datasets

Variance estimate (% of total in brackets)
Replicate Within-season | Inter-year yvithin Between site_ within
temporal 3-yr period WB (Spatial)
Metric O0%R o°w 0%y 0%s
VNTAXA |0.0576 (37%) 0.0350 (22%) 0.0365 (23% 0.0268%)
ASPT 0.0654 (28% 0.0596 (26%) 0.0209 (9% 0.08734)

For these two indices, on average, roughly onett(28% ASPT, 37% NTAXA) of the total
variance in values which occurs within a water bodgr a three year assessment period is due
to simple variability in values between replicatenples taken at any single sample site on a
single day (Table 2). The RIVPACS macroinvertebsampling protocol used is a multi-habitat
fixed time sampling method with no sub-samplingtfoe identification of taxa present; using a
less reliable method might lead to greater intplicate variability. Based on this limited
analysis, spatial variability between sites withillVB is a greater source of the total within-wB
sampling variance for ASPT (37%) than for NTAXA faY, suggesting that the type of taxa
(i.e. their nutrient stress tolerances and BMWHRes)ovaries relatively more between possible
sampling sites within a water body than the mast@itebrate taxonomic richness.

3.2  Sampling precision of water body biological me tric values

Having estimates of the various variance compongartsndices enables us to assess which
metrics (and sampling methods) are most susceptthlsampling variability. For example,
within the Europeam FP5 STAR project (Furse e@06), Clarke et al. (2006,a,b) estimated
the replicate sampling (and sub-sampling) variaaxa percentag®4ny) of the total variance

in metric values across all samples and sites ofing quality within a WFD stream type for
each of a wide range of European macroinvertebsatapling methods and stream types;
metrics and methods with relatively loRsmp, have higher sampling precision and greater
potential to provide reliable measures of rivetugalass.

The variance component estimates for the selecetdas can be used to estimate the typical
sampling precision obtained with each of a rangsashpling regimes for a WB monitoring
scheme. This can help design the most cost-eflecdampling scheme for assessing and
monitoring ecological quality using these metrics.

Consider the previous UK rivers macroinvertebraeample, where the WFD assessment is
based on the average quality and thus average walags for a water body over a three-year
period. If a sampling scheme involves takmigplicate samples at eachsosdampling sites on
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each ofw dates within the sampling season in eacly gkars (1, 2 or 3) within the 3-year
assessment period, then the sampling variao@e of the mean metric value is :

ol =ailrswy+o, Iwy+ai(1-yI3)/y+ails (Eq. 1)

There are only three years in any one WFD repopirgpd and therefore if samples have been
taken in all three years, the years are effectiteimporal statistical strata and the variance
between years does not influence the sampling pogciof the WB period mean. When
sampling has not occurred in some years, the etiofaaverage quality for the whole period is
potentially biased as some ‘strata’ have not beenpted. However, within the framework of
using variance components, this extra uncertaiagy be included as a term involving typical
inter-year within-period variance but with a finpepulation correction (¥/3) to allow for the
fraction of all (i.e. 3) years sampled (Cochran/77)9 A similar logic applies to spatial
stratification of a WB into zones or area-definebitat types. For example, if a lake has been
sub-divided into sections (such as near, mid ameHare, or shallow, mid-water and deep
sampling zones) and one or more samples taken &aam section, then the sections are
effectively statistical strata and the samplingiarace of the sample mean metric value for the
whole lake does not depend on the variance in me#iues between sections if they have all
been sampled, but it does depend on the varianaeée sites within each section. However, it
is important to have some understanding of how nuactability in the biota and metric values
occur between spatial sections and (potential)testralative to other sources of sampling
uncertainty, as this will guide whether the watedy sampling scheme can benefit from using
such sections as statistical strata.

3.3  Confidence of status class depends on precisio  n of sampling scheme

It is misleading to say “this is (definitely) th&ass of this water body”. It is more realistic &ys
“we estimate these are the probabilities of thisewaody being of each status class based on
our sampling/survey design for this assessmenbgennd this assessment method”. Given the
WFD goal for Member States to achieve good or beitelogical status for all water bodies
(ideally by 2015 but with possible extension to 20@Hering et al., 2010)), then it is especially
useful to have estimates, based on our monitonmty assessment scheme, of the confidence
(i.e. probabilityPpass) that each WB is of good or better status or coselg the confidencePt

= 1 —Ppas) that the WB failed to achieve good status. Withited resources for remediation
measures, it is important to concentrate effortsnoproving those water bodies for which we
are most confident the ecological status is inadaguwvithin the practicalities of any river basin
management plan. The confidence with which we saiga a water body to a WFD status class
and the likelihood of failing to achieve good ottbe status are dependent on the accuracy with
which we can estimate the WB mean values of theiecsefand EQRS) involved in the chosen
bioassessment method. This depends heavily onrdwsn of our sampling scheme for the
water body over the assessment period (Table ¥jndanore replicate samples from the same
site on the same day, although the cheapest fomaptitation, only reduces uncertainty due to
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small-scale spatial heterogeneity between sampbes the same site on the same day. At the
other extreme, if the sole aim was to estimateayeM/B quality over the three year period, a
statistically efficient strategy might be to takesample from one (or more) different site(s) in
each year, as this provides some spatial and tethpaverage replication (scheme 4 in Table 2)
even though with such a scheme we cannot idertigyrelative importance of spatial and
temporal variability in the observed metric values.

Table 3. lllustrative example of how confidencevedter body (WB) status class depends on
sampling scheme (1-4) used to estimate WB metrianmalues. Observed mean ASPT = 6.4,
good/moderate class boundary ASPT value for this W = 6.0, variance component

estimates as in Table 2; observed class is ‘gd@gi,= probability true class is moderate or

worse

. Within- Inter-year | Between .
Replicate . . . Variance
. season | within 3-yr | site within Prail
variance . . of mean
temporal period | WB Spatial
O'ZR O'ZW OZY 025 O'ZM
Sampling| 0.0654 0.0596 0.0209 0.0873
Scheme r w y S
1 1 1 1 1 0.2262 20%
2 3 1 1 1 0.1826 17%
3 1 1 3 1 0.1290 13%
4 1 1 1 different site each year 0.0562 5%

3.4 Uncertainty of class depends on the spatial an

extrapolation

d temporal scale of

In many monitoring schemes for a river stretch akel it is often only possible to take a
biological sample or survey at one site on one siocaon which to estimate ecological quality.
The WFD (European Union, 2000, Annex V, section4).3ecommends that for operational
monitoring using macroinvertebrates, fish or mahgdes, sampling/surveying should be at
least once every three years. The resulting estgnat ecological status are often implicitly
intended to represent average quality over theetlgear period It is useful to realise that the
confidence we can have that this is the true eccdbgtatus class diminishes with the area in
space and period in time over which this assessnsensed to represent quality, or more
specifically average quality; as illustrated in Tea$.
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Table 4. Confidence of estimated water body stelags depends on spatial and temporal extent of
application/extrapolation. Example of one samgtenaeat one site on one day with observed ASPT
= 6.4, good/moderate class boundary ASPT = 61aiwee component estimates as in Table 2;

Pcood = Confidence of observed (Good) class or better

, Estimated
Spatial-temporal scale for . . .
assessment Uncertainty variance| uncertainty| Pgoog

Variance
same site -same day O0%r 0.0654 94%
same site — season average 0°R +0°W 0.1250 87%
same site — 3 year average | o°g +02w+0%y 0.1459 85%
whole water body- 3 year average’g +0%w+0%y+0%s 0.2332 80%
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4.  Uncertainty of Reference Conditions and convers  ion of metrics
to EQRs

The WFD requires that the observéd) (alues of metrics are standardised to EQRs, lideal

a scale 0-1. A general approach to achieving fisrithby the standardisation :

O-E,

E,-E

EQR = (equation 2)

where E; = Reference Condition value (= value of metricidrichEQR = 1)
and Ep = value of metric for whiclEQR = 0

Any EQR values calculated from equation (2) whioh @egative are always reset to zero. The
EQR could be a RIVPACS-type O/E ratio whéxes set a RIVPACS model-based site-specific
expected value arf, is set to zero. When several EQRs are used ttecagaulti-metric index
(MMI) by averaging their values, each EQR is foraetb the range 0-1 by setting any EQR
values greater than 1 to 1.

4.1  Potential sources of error in setting Referenc e Condition values of metrics

A wide range of factors can influence the errorgstimates or model-based predictions of the
Reference Condition values (upper “anchor” valijg of each metric for the group of sites or
water bodies to be assessed. These include:

(1) Inadequate information & knowledge
- Inadequate set of RC sites fooabome WB types

- Not involving all “relevang&nvironmental variables
(e.g. WFD System A or $o€s or predictive model variables)

- Not making optimum predictim®del
(e.g. RIVPACS type moddllgural Networks (e.g. from the EU PAEQANN
project); mechanistic mabfiinctions/parameters)

(i) Sampling variation in RC sites’ sample data (SEefn)
(i) Inconsistent data
- Existing Data from differeratrspling methods/standards combined to set RC

- Test site’s observed sampleevand RC data values based on (partially)
different sampling methods

Similarly, errors in estimating the lower “anchoralue €p) will also have implications for
EQR values; this is especially important for mufietric indcies, where individual metric EQR
values are directly averaged prior to sub-divismstatus classes.
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4.2  Method for setting Reference Condition values for a metric

Various methods of setting the Reference Condi(iey) value of a particular metric for a
particular site/waterbody or environmental-similgmoup of sites/waterbodies can be used
depending the data available. Obviously the refsrerondition or high quality sites used to
determine thde; values should be sampled in the same way as thples for the sites being
assessed. The following are several possible aptroroughly decreasing order of preference.

i) If a suitable RIVPACS-type predictive model invioly an adequate number of
environmental similar reference condition siteavailable, then th&; values are best
based on RIVPACS-type site- and season- specidigtions of the expected fauna and
metric values.

i) In the absence of a RIVPACS model, if a suitableber of reference condition sites of
an environmentally-similar type are available, Baevalues can be based on the mean or
median metric value for these sites.

i) If a suitable number of an environmentally-similgpe of ‘high’ quality sites (of
uncertain reference condition) are available, Baeralues can be based on the mean,
median or perhaps an upper percentile (75% or 3@%ae of the metric for these sites.

iv) If only a very small number of an environmentaligagar type of ‘high’ quality sites (of
uncertain reference condition) are available, thiesm E; values cannot be reliable
estimated and might be based using the maximurneofetw values available. However,
the maximum value is not a stable measure andaseswith the number of sites on
which it is based.

v) If no ‘reference condition’ or ‘high’ status sitese available then, some form of hind-
casting or extrapolation to reference conditiont @ necessary to provide appropriate
values ofE;.
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5. Ecological assessments based on multiple metric s and/or
multiple BQEs

The WFD requires that the status class for any Wisther river, lakes, transitional or coastal
water, should be based on one or more metrics &Risierived from each BQE and then the
overall WB assessment should be based on combithimgndividual BQE assessments. In
particular, the WFD (European Union, 2000, Annexs¥Gtion 1.4.2 (i)) requires that the overall
class for a WB “shall be represented by the lowedtsovalues (classes) for the biological and
physico-chemical monitoring results for the relevanality elements”. The choice of BQEs to

involve depends on their perceived reliability ireasuring and responding to changes in
pressures on this type of water body. Part ofriliability is determined by the susceptibility of

each BQE and metric to sampling uncertainty.

5.1 Consequences of uncertainty on use of ‘Worstc  ase’ rules

The WFD prescribes use of the worst-case or “orieatitout” (OOAO) rule, whereby the
overall class for a WB is the worst of the cladsased on each individual BQE. Although this
may be logical as a precautionary rule in an iseald where the status based on each BQE can
be measured without error; in practice the ineltalncertainty associated with the sample-
based estimated class for each metric and BQE leapioblems of probable under-estimation
of the true overall class. As a simple illustratidrthe true mean value for a WB is just above
the Good/Moderate (G/M) boundary when based on e&d¥ indices, then for each index,
there is roughly a 50:50 change that the samplenmale will be below the G/M boundary. In
the worst case rule, the probability than all M peenmean index values will be above the G/M
boundary is 0.8, so with say M=3 indices, the probability that ¥ will be classified as
moderate of worse is very high 0.875 (1 —*p.&ven though the true mean value on each
individual index would classify the WB as Good ettier (Table 4).

Table 4. lllustration of implications of sample iadnility on use of worst case (one-out-all-outerul
on multiple BQEs or indices (assuming sampling uagety of BQES or indices is uncorrelated)

(@) (b)

B1 = 0.5 0.3

B2 P 0.5 0.3

B3 Ps 0.5 0.2
Worst case 1 - (14(1-P2)*(1-P3) 0.875 0.608
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More importantly, even when the individual indicesBQESs true mean vales are well above the
G/M boundary, using the worst case rule can st#bltot he overall WB class being more likely
than not estimated as moderate or worse.

The precision of using a worst case rule or a rmétric index can be reduced by adding an
extra metric with relatively high sampling varianeed low precision (for details see Clarke et
al. 2006b)

Borja (2010) compared the use of the OOAO principith an alternative existing integrated
assessment, based on the same multiple BQE datani@d, phytoplankton, macroalgae,
macroinvertebrates and fish) for 14 transitional drcoastal water bodies in the Basque region
of Northern Spain over the period 2002-08. He fotirad the OOAO method indicated a lower
status class than the integrative method for 18%2&f (WB by year) cases for coastal waters
and 58% of 224 cases for transitional waters. B@§810) found that the majority of
disagreements for transitional waters were due h® d¢bserved sample status class for
macroalgae being lower than for the other elemeatsd that macroalgae were considered to
have the lowest reliability. Re-assessments exatudnacroalgae reduced the disagreements
between OOAO and the Borja’s integrated approamm 8% to 32%, with the OOAO method
now showing greater agreement of general improvénmeMWB quality with time (Fig.2 in
Borja 2010).

One solution to problem of implementing the OOAerwith large-scale sampling variability

might be to adjust individual index EQR class Isndownwards; but then individual metrics
will have less power to detect moderate or worsaityu This is a complex issue as the ideal
adjustment might depend on the number of otheceslor BQEs involved.

| suggest that a better approach might be to thkentedian of the classes based on the
individual indices and/or individual BQEs to be dse the overall WB status classification.
Such an approach is an option in the new WISERBWGBvare (Clarke 2011) discussed
below.
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6 Estimation of SD of waterbody mean value using th e R software
package

As an example, suppose we have taken tWo=2) replicates macroinvertebrate samples from
each of threeNs = 3) sites around a lake and our best estimatélseometric variance due to
between replicate variability and between site igpatriability for this WB areVg (say 0.48)
andVs (say 0.36) respectively, then the estimate ofutheertainty SD associated with the lake
mean metric value across the six samples is thereqaot of:

Vs/Ns + Vr/(NexNg) = 0.36 /3 + 0.48 /(2 x 3) = 0.12 + 0.08 = 0;:20us SD = 0.447

and this would the estimate of the uncertainty $Ehis metric for this lake required for input
into the WISERBUGS software (see section 7) tossssenfidence of status class.

If sampling scheme had involved taking all six smipom the same site (avoiding inter-site
travel and equipment transport costs), then themmiaty SD would be much higher:

Vs/Ns + VR/(NrXNsg) = 0.36/1+0.48 /(6 x 1) = 0.36 + 0.08 = 0;,44us SD = 0.663.

Sampling at a single site around the lake can neaduce the uncertainty SD below 0.6 (i.e.
below the square root of the between-site variaf€e36)

If the degree of sampling and spatial replicatianas between sites and water bodies, then the
formula for the estimated variance and thus SCchefWB mean metric value is more complex,
but here we give a brief illustrative example ohhiiese estimates can be obtained using the R
software package

The software package R is freely available framw.r-project.org This package has several
routines which can be used to fit mixed modelst(th#ose involving both ‘fixed’ level factors
and ‘random’ level factors

If the estimates of variance components for a tataterbodies are obtained by analysing their
replicate, spatial and (maybe) temporal variab#itytogether using a mixed model approach in
the R software package using the routme or Imer, treating WB as a ‘fixed’ effect factor, then
the estimates of both the mean and its SD for &&Bh(even with unequal replication) are
automatically available in the model ‘summary’ axeld effects ‘Values’ and ‘Std.Error’
respectively.

Figure 2 illustrates the approach and mixed modgw using R. It is an example involving a
single metric Biolndex' for each of 4 samples from each of 9 sites frauoheof 8 lakes (1-8),
except for lake 5 which only had one sample frowheaf 6 sites. It shows how to specify the
correct mixed model in thB Imer routine and how thémer output for the lakes treated as a
‘fixed’ effect gives the estimate of the lake meaetric value (as ‘value’) and its SD ( as
‘Std.Error’). Notice the larger SE for lake 5, baesa of its lack of replication and fewer
sampling sites.

The above WB mean values derived Ryoutinelmer (or Ime) can be used directly as inputs
into WISERBUGS as observed WB metrics values in@eserved metrics values file’.
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Also, the above estimates of the SD of the WB mednes derived bR routinelmer (or Ime)
can be used directly as inputs into WISERBUGS a&s Wincertainty SD for that metric in
columnl of the ‘Metric specification file’

Figure 2: lllustrative output from R mixed modelafysis showing how to obtain estimates of
the uncertainty standard deviation (SE) for a whtely sample mean observed metric value

Example R analysis for WISER Lake data structure [subset)

8 Lakes x 9 Sites x 4 samples (except Lake 5 with 1 sample at each of 6 sites)

=# MNow fit Mixed model using 'R’ software with Lalke as Fixed factor {with value 1-8)
=# and Site within Lake as Random factor 'LakeSite’
=i 'LakeSite’ has unigue value for each Site x Lake combination

=modell=-Imer(Biohdex~—1+Lake+{1|LakeSite)
= Biolndex ~ FIXED + [RANDORM)

=summaryimaodel 1)

Lingar mixed mode| fit by REML
Faormula: Biolndex ~ -1 + Lake + (1 | LakeSite)

Random effects:

Groups MName Variance Std Dey.
LakeSite (Intercept) 83476 2 8892 = Between Sites within Lake Variance = Vg
Residual 42979 20731 =Betwesn samples within Sites Variance = Vg
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Example R analysis for WISER Lake data structure {subset)

8 Lakes x 9 Sites x 4 samples (except Lake 5 with 1 sample at each of 6 sites)
NS NR
Fixed effects: Biolndex ~ -1 + Lake
Value  StdError DF tvalue

LakeZ 1354060 1.023222 |61 1323329
Lake3 2005929 1023222 |61 1960403 SE = sgrf Vs { Ns 4 VE. a"(N5 X NR)]
Laked 22 66830 1023222 \61 2215383
Lake5 2688810 1451792 (B 062 =sqri{B.3476 /9 +4.2973 /(9 x 4) ]

Lakef 3183089 1_023222\ 1 31108 =1.0232
33 62689 ’ Lake Means and SE

Lake? 3440779 1.023222 |6 : )
Laket 3931276 1.023222 761 42054 For Lake § input into WISEREBUGS

| |
SE=5q|"t[ VSINS +VR’(NS:(NR)]

Estimate of SE of Lake
Lake Mean  Mean = sqri[ 8.3476 /6 +4.2979 (6 x 1) |

Random effects: = 14518

Groups MName Variance  Std.Dew.

LakeSite (Intercept) 83476 2 8892 =Between Sites within Lake Varance =Ny
Residual 42979 20731 =Between samples within Sites Variance = Vg
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7. General approach for assessing status class uncertainty using
WISERBUGS

New software called WISERBUGS (WISER Bioassessmiémtertainty Guidance Software)
has been written within the WISER project to preval general means of using simulations to
assess uncertainty and confidence in any estintdtesological status class for water bodies
based on either single metrics or a combinatiomefrics, multi-metric indices (MMIs) and
multi-metric rules. The User provides prior estiegabf the relevant sampling uncertainty for
each metric and metric value to be involved invlag¢er body assessments, together with metric
status class limits and the rules for combiningricginto an overall water body assessment.

WISERBUGS is designed to be as generic as possiblthat it can be used with a wide range
of metrics derived from field site sampling andv&ay data for any single or combination of
biological quality elements (BQEs, namely phytojltam, aquatic flora, macroinvertebrates
and/or fish) and any type of water body (riverkek transitional or coastal waters).

The program requires the User to provide a ‘MeS8pecification File’ in EXCEL format, in
which they specify which metrics are to be usedd&termine the site or waterbody
bioassessments, the individual metric uncertairdgm@ates and the multi-metric rules for
combining information from individual metrics.

The uncertainty in the estimate of the (usuallypmealue of a metric for a water body depends
on the level of sampling replication on which itsM@ased in terms of replicate sampling, spatial
and temporal sampling coverage over the area ok#ter body to be assessed and the period of
time for which the water body assessment is toyapphe estimates of uncertainty in individual
metric values can include the sampling standardatlen (SD) due to sampling/sub-sampling
variation and (optionally) the SD and bias dueample sorting and identification.

In practice the uncertainty SD estimates for eadtrim for each water body or site to be
assessed within WISERBUGS must be based on be#tlaeainformation from replicated
sampling studies on this or environmentally-similater bodies.

The WISERBUGS software and User Manual is freelyrwaloadable from the WISER web-site
(www.wiser.el).
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